Scharl, Theresa, Grün, Bettina, Leisch, Friedrich. 2010. Mixtures of Regression Models for Time-Course Gene
Expression Data: Evaluation of Initialization and Random Effects. Bioinformatics 26 (3): 370-377.
BibTeX
Abstract
Finite mixture models are routinely applied to time course microarray data. Due to the complexity and size of this type of data, the choice of good starting values plays an important role. So far initialization strategies have only been investigated for data from a mixture of multivariate normal distributions. In this work several initialization procedures are evaluated for mixtures of regression models with and without random effects in an extensive simulation study on different artificial datasets. Finally, these procedures are also applied to a real dataset from Escherichia coli.
Tags
Press 'enter' for creating the tagPublication's profile
Status of publication | Published |
---|---|
Affiliation | WU |
Type of publication | Journal article |
Journal | Bioinformatics |
Citation Index | SCI |
WU-Journal-Rating new | FIN-A |
Language | English |
Title | Mixtures of Regression Models for Time-Course Gene Expression Data: Evaluation of Initialization and Random Effects |
Volume | 26 |
Number | 3 |
Year | 2010 |
Page from | 370 |
Page to | 377 |
Reviewed? | Y |
Associations
- Projects
- Modelling Unobserved Heterogeneity Using Mixtures
- People
- Grün, Bettina (Details)
- External
- Leisch, Friedrich
- Scharl, Theresa
- Organization
- Institute for Statistics and Mathematics IN (Details)